Qubits, Cats and Gates

Oxford Ion Trap QC project: status and plans

David Lucas

Centre for Quantum Computation
Clarendon Laboratory, University of Oxford

www.physics.ox.ac.uk/users/iontrap

\$ DTO / ARO / NSA£ Royal Society, EPSRC€ ConQUEST, SCALA networks

Recent results (year to July 2005)

Ion cooling:

- single ion cooled to ground motional state: <n>=0.02(2), T=10μK
- very low motional heating rate: 3(1) phonons/sec
- long motional decoherence time: ~0.2 sec
- strings of 2 and 3 ions cooled close to motional ground states

Single-qubit coherent manipulations:

- Rabi flops, Ramsey & spin-echo sequences with up to 98% fidelity
- "Schrödinger Cat" spin-motion entangled states with $\langle n \rangle = \alpha^2 = 9$
- new, long-lived, qubit in 43 Ca⁺, decoherence time T_2 =0.9(2) sec

Two-qubit logic gate:

• deterministic entanglement (& tomography) of 2 ions: 82(2)% fidelity

Oxford ion trap group

B.K. D.L. J.H.

Faculty:

Andrew Steane Derek Stacey David Lucas

Post-docs:

Jonathan Home
Matt McDonnell
Nick Thomas
+ ???

Ph.D. students:

Ben Keitch
Greg Imreh
David Szwer

Posters M7 and M8

Overview

- Background
 - choice of ion (and a recent surprise!)
- Qubits
 - ⁴⁰Ca⁺ ground-level spin qubit (S_{1/2} m_S=±1/2) and readout
 - -43Ca⁺ hyperfine qubit (S_{1/2} F=3, F=4)
 - preparation, readout and detection issues for ⁴³Ca⁺
- Cats
- "Schrödinger Cat" spin-motion entangled states
- pushing entangled states beyond the Lamb-Dicke regime
- Quantum logic gates
 - deterministic two-ion entanglement with tomography
 - preliminary studies for fast gates using a pulsed force
- [Multiple traps & scaling up]
 - design studies [Home & Steane quant-ph/0411102]
 - multiple trap under construction

The vision...

How to build a 300 bit, 1 Gop quantum computer

Andrew M. Steane

Centre for Quantum Computation, Department of Atomic and Laser Physics,

Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, England

(Dated: May 25, 2005)

Experimental methods for laser-control of trapped ions have reached sufficient maturity that it is possible to set out in detail a design for a large quantum computer based on such methods, without any major omissions or uncertainties. The main features of such a design are given, with a view to identifying areas for study. The machine is based on 13000 ions moved via $20\mu m$ vacuum channels around a chip containing 160000 electrodes and associated classical control circuits; 1000 laser beam pairs are used to manipulate the hyperfine states of the ions and drive fluorescence for readout. The computer could run a quantum algorithm requiring 10^9 logical operations on 300 logical qubits, with a physical gate rate of 1 MHz and a logical gate rate of 8 kHz, using methods for quantum gates that have already been experimentally implemented. Routes for faster operation are discussed.

Choice of ion

ion		⁹ Be ⁺	⁴³ Ca ⁺	¹¹¹ Cd+
$\lambda (S_{1/2}-P_{3/2})$	nm	313	393	215
$\lambda'(D_{3/2}-P_{1/2})$	nm	-	866	-
fine structure Δv_{FS}	THz	0.20	6.7	75
linewidth $\Gamma(S-P)$	MHz	20	23	47
"quality factor" Δν _{FS} /4Γ	104	0.25	7.3	40

25

49

104

 $(1/\varepsilon) \propto \lambda^3 P / \Omega_R$

Ozeri et al., PRL 2005

8.1

Linear ion trap

Under (macro)fabrication!

ion-electrode distance = 0.7 mm trap-trap separation = 0.8 mm test open design concept Built by University of Liverpool (S.Taylor)

40Ca+ level diagram

Efficient state detection

"E.I.T." read-out

"E.I.T." read-out

McDonnell et al. PRL 2004

43Ca+ level diagram

Isotope-selective photo-ionization

Hyperfine qubits in ⁴³Ca⁺

Hyperfine qubits in ⁴³Ca⁺

Long-lived qubit in ⁴³Ca⁺

Preparation, readout, detection in 43Ca+

"Clock" qubit initialization in 43Ca+

Optical pumping:

 $m_F=0 \rightarrow m_F=0$ if $\Delta F=0$ so $S_{1/2}(4,0)$ should be a dark state...

<u>BUT</u> off-resonant $F=4 \rightarrow F=3$ pumps ion out of (4,0) clock state.

Best available optical pumping efficiencies:

98.9% (I₃₉₇=0.01, takes 3.2ms!)

98.6% (I₃₉₇=0.1, takes 100μs)

[Note preparation of (4,+4) stretched state is only limited by σ + polarization purity.]

Raman laser system for 43Cat

- need phase-locked 3.2GHz
 offset for hyperfine structure qubit
- 20mW usable slave output from 0.05mW injection beam
- AOM efficiency ~25% per pass

Shelving for qubit readout in 43Ca+

Shelving for qubit readout in 43Ca+

Efficiency of Readout from Clock States [Solid Line] and Stretched States [Dashed Line]

Efficient state detection in 40Ca+

Presently get ~12.5 signal counts and ~0.1 background counts in 0.5ms, implies 0.9995 discrimination possible. $P(D_{5/2} \text{ decay in 0.5ms})=1-0.9996$.

Maximizing fluorescence in 43Ca+

Steady-State Population of P $_{1/2}$ during Cooling with 397 nm and 866 nm $\sigma\pm$ Lasers

Maximizing fluorescence in 43Ca+

Steady-State Population of P $_{1/2}$ during Cooling with 397 nm and 866 nm $\sigma\pm$ Lasers

Cooling to ground motional state

Three stages: − standard Doppler cooling to ~0.5mK → $\langle n \rangle \approx 20$

– continuous Raman sideband (Δ ≈–150MHz) → <n> ≈ 0.5

 pulsed Raman sideband (Δ≈+30GHz) → $\langle n \rangle \approx 0$

Single ion:

< n > = 0.02(2)

Heating rate:

3(1) phonons/sec

Motional coherence time of

|n=0> + |n=1> superposition:

200(50) ms

<u>Two-ion Raman spectrum</u> → 0.2ms Doppler 6ms continuous Raman 2x20 cycles pulsed Raman

$$< \Pi_{COM} > = 0.2(1)$$

Quantum harmonic oscillator

- If you displace the ground state in phase space, you get a *coherent state*.
- Each coherent state can be specified by a single complex number α .
- $|\alpha\rangle$ can be expressed as a Poissonian distribution of number states with <n \rangle = $|\alpha|^2$

Forced quantum harmonic oscillator

Apply a near-resonant oscillating driving force ("wobble"): $F = F_0 \sin(\omega t)$ with $\omega = \omega_0 + \delta$

Phase space, rotating frame

Result: displace the coherent state with $\alpha(t)$ following a circle

Time to complete the circle = $2\pi / \delta$ Maximum $|\alpha| \propto F_0 / \delta$

Spin-dependent "wobble" force

"Schrödinger Cat" experiment

Create a superposition of 2 coherent states, then recombine them and show that their relative coherence is preserved:

Example with small α

Similar to experiments with a trapped ion: C. Monroe *et al*, Science **272**, 1131 (1996) and with atom+microwave cavity excitation: J.M.Raimond *et al*, Phys.Rev.Lett. **79**, 1964 (1997).

Sequence

1. cool to ground state and optically pump:

$$|\psi\rangle = |\downarrow\rangle |\alpha = 0\rangle$$

2. $\pi/2$ pulse on spin state:

$$|\psi\rangle = \frac{1}{\sqrt{2}} (|\downarrow\rangle + |\uparrow\rangle) |0\rangle$$

3. apply spin-state-dependent force:

$$|\psi\rangle = \frac{1}{\sqrt{2}} (|\downarrow\rangle |\alpha(t)\rangle + |\uparrow\rangle |-\alpha(t)\rangle)$$

4. advance local oscillator by θ :

$$|\psi\rangle = \frac{1}{\sqrt{2}} \left(|\downarrow\rangle |\alpha\rangle + e^{i\theta} |\uparrow\rangle |-\alpha\rangle \right)$$

5. $\pi/2$ pulse on spin state:

$$|\psi\rangle = |\downarrow\rangle \left(\frac{|\alpha\rangle + e^{i\theta} |-\alpha\rangle}{2}\right) + |\uparrow\rangle \left(\frac{|\alpha\rangle - e^{i\theta} |-\alpha\rangle}{2}\right)$$

6. measure spin:

$$P(\uparrow) = \frac{1}{2} \left(1 + \operatorname{Re}(e^{i\theta} \langle \alpha | -\alpha \rangle) \right) = \frac{1}{2} \left(1 + \cos(\theta) e^{-2|\alpha|^2} \right)$$

Each point = 1000 repeats of the experiment

2

phase angle θ

Б

 2π

4

-10

-5

0

5

10

-2

-2π

Interpretation

Cats of all (smallish) sizes...

time (duration of driving force) in units of $2\pi/\delta$

Cats beyond the Lamb-Dicke regime

For large spatial excursions the driving force is really: $F = F_0 \sin(kx - \omega t)$

Outside Lamb-Dicke regime (large η) cannot neglect kx term.

Force amplitude scaled in both cases to give same "expected" α_{MAX} For η =0.25, see squeezing and "barrier" effect

Cats beyond the Lamb-Dicke regime

"Wobble" gate for 2-ion entanglement

Forces in opposite directions: forces STRETCH motion (ω close to resonance): coherent drive gives phase shift

Forces in same direction: tries to force COM motion, but ω far-detuned: no effect

Truth table:
$$|\downarrow\downarrow> \rightarrow |\downarrow\downarrow> \\ |\uparrow\downarrow> \rightarrow e^{i\pi/2}|\uparrow\downarrow> \\ |\downarrow\uparrow> \rightarrow e^{i\pi/2}|\downarrow\uparrow> \\ |\uparrow\uparrow> \rightarrow |\uparrow\uparrow> \\ = e^{i\pi}(e^{i\pi/2}|\uparrow>)(e^{i\pi/2}|\uparrow>)$$

"Controlled-phase" gate: equivalent to CNOT up to single-qubit phases

Leibfried *et al.*, Nature 2003: F=97%!

"Wobble" gate result

Feb 2005

"Double Wobble" result

- use twin loop to eliminate single-qubit phase shifts
- fidelity now 82(2)%
- ~12% infidelity due to photon scattering $(\Delta = 30 \text{ GHz})$
- also imbalanced light intensity, motional decoherence...

June 2005

Tomography of entangled state

Rotating frame phase space picture (Lamb-Dicke regime)

Phase gate is insensitive to fluctuations in walking-wave phase

Rotating wave approximation breaks down at large detunings

STRETCH ω =1.5 ω_s single pulse

 $\begin{array}{l} \text{STRETCH} \\ \omega = 3\omega_s \\ \text{single pulse} \end{array}$

 $\begin{array}{l} \text{COM} \\ \omega = 3\omega_s \\ \text{single pulse} \end{array}$

orbit not closed!

STRETCH ω =4.04 ω s 4 pulses

COM ω =4.04 ω s 4 pulses

4 pulses (simple)

all
$$\omega \sim 4~\omega_{\rm com}$$
 t(gate) = 1.75 $2\pi/\omega_{\rm com}$

fidelity = 0.99999 (excluding photon scattering, heating...)

freq.
$$\omega \sim 20~\omega_{\rm com}$$
 t(gate) = 0.27 $2\pi/\omega_{\rm com}$

fidelity = 0.999 999 99 (excluding photon scattering, heating...)

4 pulse sequence with η_c =0.1 fidelity drops from 0.99999 to 0.9988 (so far...)

